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Abstract coordinate time is not observable, but "'clock time" is observable. 
Therefore, any statement about temporal evolution can be replaced, without loss 
of observational content, by a statement about correlations between a clock and 
another physical system. We show that information about such correlations can 
be represented just  as well in a single " t imeless"  quan tum state as in a whole 
history of states. It is therefore not necessary to include " t ime"  as a basic 
element in the description of the world. 

1. THE CONDENSATION OF HISTORY 

I would like to argue here that physics can do without the concept of 
" t ime,"  and that the function that " t ime" performs in physics can be 
performed .just as well by nonlocal quantum correlations (Einstein et al., 
1935; d'Espagnat, 1976) particularly correlations between the physical sys- 
tem one is studying and another system which is used as a clock. The 
essence of the argument is as follows: Any statement we would ordinarily 
make regarding the time dependence of a" system can without loss of 
observational content be cast in the form, " I f  the clock is found to be in the 
state . . . .  then the probability of finding the system in the state. . . is  . . . .  " 
Such a statement makes no reference to coordinate time. We will see that a 
single highly correlated quantum state can hold as much of this kind of 
information as an entire history of states, and, in fact, that any such history 
can be replaced by a single state. A similar conclusion has been reached in 
work on the quantum theory of gravity (DeWitt, 1967; Baierlein et al., 1962; 
Arnowitt et al., 1962; Wheeler, 1968; Peres, 1968). Here we wish to 
emphasize that the possibility of representing evolution in a single static 

~This paper is based on work done by D. N. Page and the author and published in Plo's. Rev. 
D, 27, 2885-2892 (1982). 
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state is a general feature of quantum theory and is not peculiar to quantum 
gravity. 

One motivation for considering such a "condensation" of history is the 
desire for economy as regards the number of basic elements of the theory: 
quantum correlations are an integral part of quantum theory already; so one 
is not adding a new element to the theory. And yet an old element, time, is 
being eliminated, becoming a secondary and even approximate concept. 
[See DeWitt (1967), p. 1137; also Peres (1980).] 

Another motivation, more in the spirit of this conference, is this: If 
" t ime" can be replaced by correlations, perhaps "space" can be also. 
Spatial information might somehow be encoded in a complex network of 
correlations among nonspatial variables, such as spin variables, for example, 
which would be regarded as logically prior to space and time. Such a 
repicturing of "space" would obviously provide a new starting point for 
attempts to construct a complete and workable quantum theory of gravity. 
Indeed, with the description of space-time being so intimately tied up with 
quantum theory to begin with, there would likely be nothing left to 
quantize. Similar hopes of finding a pregeometric (Misner et al., 1973) 
foundation for space-time have been expressed before, and the goal remains 
ahead of us. For the rest of this paper we will restrict our attention to 
reducing " t ime" to quantum correlations. 

2. A TWO-PARTICLE UNIVERSE 

Let us consider first a very simple model universe: two noninteracting 
sp in- l /2  particles in a magnetic field. Although we speak of this two-par- 
ticle system as a model universe, we will nevertheless assume for now, for 
heuristic purposes, that there is an outside observer who can make measure- 
ments on the "universe". Later on (in Section 5) we will do without the 
assumption of an outside observer. 

In this model universe the magnetic field is uniform and parallel to the 
positive z axis, and the two particles, which have identical magnetic 
moments, start out at t = 0 with both of their spins pointing in the positive 
x direction. That is, at t = 0 each particle is in the state 

1 

where IT )and  I$ ) are eigenstates of 3... The equation of motion then 
requires that the particles' spins precess together around the vertical axis, so 
that the state of each particle at time t is 

[ ~ ( t ) 5 = - - ~ - ( e  [ T ) + e -  $))  
V z  
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where a is the product of the magnetic moment of a particle and the 
magnitude of the magnetic field, divided by h. 

Let us regard one of the particles as a clock, its direction of spin being 
analogous to the direction of the pointer of an ordinary clock. We can then 
speak of the other particle (called the "object particle") as precessing with 
respect to clock time, in the following sense: If we make a right-vs.-left 
measurement (i.e., positive-x direction vs. negative-x direction) on the clock 
particle and simultaneously make an identical measurement on the object 
particle, we will find with high probability that the outcomes of the two 
measurements are the same. (The reason the probability of agreement is not 
100% is that the measurements may be made at a time when the particles 
are not in eigenstates of J.~, in which case each particle will have a nonzero 
probability of yielding either outcome.) Interpreting the "right" outcome of 
the measurement on the clock as a clock reading of 12:00, and interpreting 
the "left"  outcome as a clock reading of 6:00, we can say that at 12:00 the 
object particle has a high probability of yielding the "right" outcome and 
that at 6:00 it has a high probability of yielding the "left"  outcome. Similar 
statements can be made about the behavior of the object particle at other 
values of the clock time; one must only imagine measuring other horizontal 
components of the spin of the clock particle. The behavior expressed in 
these statements can reasonably be described as "precession with respect to 
clock time." 

This analysis in terms of clock pointer positions may seem to be a 
long-winded way of saying something which is obvious. After all, the two 
particles are precessing in this example. However, this sort of analysis will 
be quite necessary in the following example, in which there will be no 
precession other than precession with respect to clock time. 

Let us now consider a different initial state of the same two-particle 
system, namely, the stationary state I't'> obtained by integrating the above 
time-dependent state over time: 

1 _ (t)} -ia, I ]x!z>~ fo2~r/e~dl] ~(l)(t)>] ~(2)(t)>=5~'~/~dt(ei"'[ t +e 4(1))) 

X(eir 1,(2}>+e-ia, I ~ {21>) 

Here the superscripts are used to identify the two particles. The normalized 
state of the two-particle system is thus 

I'P>=~-2 ( 1 I"<~2~)+I ~i'~)) 
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[pt') can alternatively be characterized as proportional to the projection of 
[~m(t))l~(2~(t)) (for any time t) onto the zero-energy eigenspace of the 
system. The projection of any evolving state ]+(t))  onto the subspace with 
energy E is equal to limr_~(1/T)ffdtem'/hl~/(t)).] Even though I't') is 
stationary, it has the same property we saw in the above time-dependent 
state which allowed us to conclude that the object particle was precessing 
with respect to clock time: the object particle's state is correlated with the 
clock's pointer position. Indeed, if the clock has been found to be pointing 
to the right, then the other particle when subjected to a right-vs.-left 
measurement will certainly also be found pointing to the right. This can be 
seen by noting that the probability of finding the clock in the "right" state 
and the other particle in the "left" state is zero: 

(RmLI2)I't')= [�89 ($ml)((t~2'l-(*~'-~l )] 

[~-2 (2))+ m (2)))] 0 x (I t ro t  I~ 1' = 

Such perfect agreement between the two particles holds for any horizontal 
direction. In this sense one can speak of a kind of evolution, namely, 
evolution with respect to clock time, even within a single stationary state. 

It is illuminating to consider a similar system of two spin:/ particles in 
a magnetic field. Again we construct a stationary state 1't') by integrating 
over time a history of states in which the particles precess together, always 
having their spins parallel and horizontal. More precisely, 

f2~/~dt[ J2]) jh)[ J~Z t) jh) I , I , )  cc = = 
J0 

where J ,  is the component of angular momentum along the direction 
(cos q~).~ + (sinq0j',, and I J ,  = jh) is the eigenstate of J ,  with eigenvalue jh. 
Upon writing this state out in terms of eigenstates of J_ and performing the 
integration, one finds that 

(,,) (2,) 
I~') = 2 j  )-" j "F m I mr1 ) , -  IH(2)) 

I I I  ~ - -  J 

where Ira) is the eigenstate of J. with eigenvalue mh, and 

n! 
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TABLE I. The Probability of Finding the Object Particle Pointing to the Right 
Given That the Clock Particle Has Been Found Pointing to the Right: 

(a) When the Two Particles Are in the Stationary State [',t'); 
(b) When the Particles Are Precessing Together in a Time-Dependent State. 

(a) (b) 
J P(Ro~IR~n~k) j P(Ro~lRd~k) 

i / 2  1 
1 9/10 = 0.900 

3/2 25/28 = 0.893 

oo v~-'/2 = 0.866 

1/2 3/4 = 0.750 
1 35/48 = 0.729 

3/2 231/320 = 0.722 

oo V~-/2 = 0.707 

Again we ask the question: If the clock particle is found with its spin 
pointing to the right, by which we mean that it is found in the state 
[J,. = jh), then what is the probability P(RobjlRdo~k ) of finding the object 
particle also pointing to the right? The calculation is straightforward: 

probability of both / 
pointing to the right ] 

P(  Rob j[ R clock ) 
/probabil i ty of the clock 
/ / 
k pointing to the fight ] 

l( J:,! t> = jh ,  j~2~ = jhl,i,)l 2 
J 

E I (JJ"  = jh, j.$21 = mhl,i,){2 
g/I ~ - J  

The results for some values of j are given in Table Ia. The lower bound 
on the conditional probability of agreement P(RobjlR~,o~k) is about 87%, 
which is quite high when one considers that "pointing to the right' is only 
one of 2 j  + 1 possible orthogonal states in which one could find the object 
particle. As before, this high degree of agreement holds also for any other 
horizontal direction, and we can therefore say that the object particle is 
precessing with respect to clock time. 

3. C O M P A R I S O N  WITH THE TIME-DEPENDENT CASE 

At this point one might object: In the stationary state ['I t ) the agree- 
ment between the two particles is not perfect (unless j = 1/2),  whereas in 
the original time-dependent example the agreement is perfect, since the two 
spins are exactly parallel at all times. Therefore, some information is lost in 
the transition to the "t ime as correlations" picture. 
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But in fact no information is lost if we concern ourselves only with the 
outcomes of measurements. If we take seriously the idea that there are no 
clocks in the universe other than the two particles, then even in the 
time-dependent case the agreement between measurements made on the two 
particles is not perfect. (We have seen this before in our discussion of the 
two sp in - l /2  particles.) Suppose, for example, that the outside observer 
checks both particles to see if they are in the state IJ, = jh). If he makes 
this measurement at a time when the particles are in fact in that state, then 
he will of course find perfect agreement. However, he may make the 
measurement at a time when both particles are in the state [J, = jh) with 
q~ ~ 0, i.e., when their spins have precessed away from the "right" position, 
in which case there will be a nonzero probability of finding one particle in 
the state IJ~ = jh) while the other is found in some orthogonal state. 
Assuming the measurement is made at a random time, we can calculate the 
conditional probability of agreement: 

f z#/adt I (J ,9  ~ = jh, j.,!2) = jhlJ~, = jh,_jfl = jh )l 2 

P( Rob, iRdo~k)= "0 )of2~/~dtI(J'l' ' ' " '  
jh)l= x = j t t  a a t  = 

Upon doing the integrals one finds that 

( 8 j -  1)! ! (4j ) ! !  
P(R~176 = (8 j ) ! ! (4 j  -- 1)!! 

This result is illustrated for a few values of j in Table Ib. Comparing this 
result with that of Table Ia we see that the correlation is actually better 
when the particles are in the stationary state I't') than when they are 
precessing together with respect to the unobservable coordinate time. 

The fact that the stationary state gives better correlations is easily 
understood. The conditional probability of agreement, calculated as above 
in the time-dependent case, can be written in the form 

fo2=/'~dt Tr[ PnRP( t )] 

P(RobjIRc,o~k) = f z~/~dtTr[pRp(t)] 
I /  

where Prig is the projection operator onto the state in which both particles 
are pointing to the right, Pn is the projection onto the subspace in which the 
clock particle is pointing to the right, and p(t) is the instantaneous density 
operator of the two particles: 

p(t) = I J2)' = jh, -atJ(2' = jh)(j~lt)= jh, J2~)= jh [ 
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We can rewrite P(RobjlRclo~k) once again to get 

p(Ro.jIRc,o k) - Tr[PRRP] 
Vr[/'R P ] 

where 0 is the time-averaged density operator 

0 ~ fo2~/~dtp(t) 

Thus the degree of correlation between the two particles when they are 
precessing together in the time-dependent case is exactly the same as when 
they are in the stationary mixed state p. 

The state ]'I') is a pure state chosen for its high degree of correlation, 
and it is one of several orthogonal pure states which are represented in p, 
the others being less highly correlated than ]'I'). It is therefore not surpris- 
ing that the two particles exhibit a greater degree of agreement when they 
are in the state ]'I') than when they are in the state p, and hence than when 
they are in the observationally equivalent time-dependent state. 

The above equivalence between the time-dependent case and the time- 
averaged stationary mixed state p generalizes to any closed system. Further- 
more, one can always find a stationary pure state I'I') in which the 
correlations among the parts of the system are at least as strong as in the 
stationary mixed state p. Therefore, as far as these correlations are con- 
cerned, one does not lose any information by going from a time-dependent 
description to a description in terms of a single stationary state. 

4. AN N-PARTICLE UNIVERSE 

In the real world there are more than two systems whose states appear 
to be changing in time. We take this fact into account in our final example, 
in which the universe consists of N spin-j particles instead of just two. We 
construct our stationary state in the same way as before: Start with all the 
particles pointing to the right; let them precess in the uniform vertical 
magnetic field; integrate the state of the whole N-particle system over time 
to get the highly correlated stationary state I~) .  (As we mentioned above, 
doing the integral amounts to projecting onto the E = 0 subspace. If N and 
2 j  are both odd, then zero is not an eigenvahie of energy, and one has to 
project onto a different eigenspace of energy. As long as the eigenvalue is 
close to zero, the resulting stationary state will have strong correlations 
among the particles.) 
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In this stationary state I~t'), one has a description of several clocks all 
keeping the same time, or alternatively, of several dynamical systems all 
evolving together. Of course, if you make a measurement on just one of the 
particles, the outcome will be completely random; in a sense you are trying 
to look at the whole history of that particle all at once. In order to see the 
evolution, you need to look at at least two particles and let one of them 
serve as a clock. Indeed this is what we do in real life: when we speak of a 
system changing in time we are always really comparing two systems, an 
object system and a clock. In most everyday cases the clock is nothing more 
than the physical system that corresponds to our own internal sense of time. 

For very large N, the degree of correlation between any two particles in 
the state I't,) turns out to be the same as what is shown in Table lb. In this 
sense the information content of the stationary state is equal to that of the 
time-dependent state, rather than being greater as in the previous example. 
Of course, the main point is that in this example, as in any case, no 
information is lost in replacing a history of states by an appropriate 
stationary state. 

5. EVOLUTION WITHIN A SINGLE STATE 

We are thus led to consider the view that there is one single I't') 
describing the whole history of the universe. We now discuss very briefly the 
interpretation of such a D~t ' )  in terms of measurements made by observers 
within the universe, and we ask what properties ]'t') should have in order 
for the observed evolution to conform to the usual equation of motion. 

An observer within the universe is somewhat analogous to one of the 
particles in the above N-particle example, in the sense that his own state is 
highly correlated with the state of the rest of the world. When he makes a 
measurement on the world around him, he also makes a measurement, 
without even trying, on some of his own internal variables. This combined 
measurement, being made entirely within the universe, does not collapse the 
state of the universe as a whole but only gives the observer the experience of 
being in one of the many different states which are possible for him within 
the state ]'t'). Given that he is in this state, the correlations inherent in I'I') 
place strong restrictions on the result of his measurement of the world 
around him. The correlations he thus observes between his own state and 
the state of the world around him, as well as the correlations among the 
various parts of the outside world, are interpreted by him as the passage of 
time. 

In this picture there is clearly no need for an equation of motion of the 
state I~,'), since 19) is fixed once and for all. However, if any ]q') were 
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allowed, then the world as we observe it would not necessarily exhibit any 
regularity in its evolution: the observed evolution is determined by correla- 
tions in [xp), and one can construct a [xt') with whatever correlations one 
pleases. We must therefore introduce a restriction on the set of possible 
['P)'s. It is clear that we will get agreement with the usual equation of 
motion if we insist that [xt') be an eigenstate of the Hamiltonian of the 
universe, since such a stationary [xI') is allowed even in the usual picture, in 
which one does have a coordinate time. Thus one can replace the equation 
of motion of the universe by the requirement that the state of the universe 
be an eigenstate of the Hamiltonian. 

As an illustration of this point, consider a universe consisting of two 
noninteracting parts: (i) a clock and (ii) the rest of the universe. The 
Hamiltonian is of the form 

H = H,.| r + I, . |  r 

where c and r stand for "clock" and " the  rest." The state I'1/) of the 
universe is an eigenstate of H, and for simplicity we take the eigenvalue to 
be zero: H[~t '> -- 0. Let I~,.(0)> be a state of the clock chosen to correspond 
to the zero of clock time, and for each "r define I~c(~-)) = exp( -  iHdr)l~c(0) ) 
as the state possessing the value "r of clock time. Finally, let I~r('r)) be the 
relative state (Everett, 1957) of the rest of the universe when the clock is in 
the state I~,.(~-)). That is, J~r(~)) is the state from which probabilities for 
the rest of the universe can be calculated given that the clock has been 
found in the state J~c(~')). Mathematically, ]~r(~')) is the coefficient of 
]~,.(-r)) in an expansion of ['P) as a linear combination of orthogonal clock 
states. We will use the compact notation 

J = , I ,>>  

The ))  indicates that ]'I') is in a larger Hilbert space than J~c(~')). We want 
now to find the evolution of I~r) with respect to clock time ~. We have 

ih-d-~z [ ~r(~')) = i h  (~,.('r)l 't'>) 

= -  (~5, . (T)IH,.I  , t , ) )  

= - ( ~ , . ( r ) l  H -  HA 'F ) )  

-- (~5,.(,r)l H~I'I')) 

= H / ~ , . ( ~ - ) I  ' I '>)  

= H A ~(~)>  

Thus, as long as I't') is an eigenstate of H, and as long as there exists a 
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clock, then the rest of the universe automatically follows the usual law of 
evolution with respect to clock time. 

In our own world there is not just one clock but many clocks, which are 
all correlated with each other in much the same way as the N spin-./ 
particles were correlated with each other in our earlier example. (Any 
system whose state is observed to be changing can be counted as such a 
clock.) In that example, the state I't ') we chose was a very special state: not 
only was it an energy eigenstate; it also had a special kind of correlation 
among the particles. These correlations guaranteed that one could guess 
fairly well the state of one particle by observing another particle, just as in 
our own world we can guess the state of one clock by looking at another. On 
the other hand, a typical state of the N-particle system, even a typical 
energy eigenstate, would not have this property. In a typical state, there 
would be complicated many-particle correlations but very few two-particle 
correlations, so that one could not say much about the reading of one 
"clock" by looking at another. In such a case the particles would not be very 
useful at all as clocks. Each one could be regarded as keeping its own 
"private" time, with respect to which the rest of the universe could be said 
to be evolving, but there would be no common time which they all shared. 
Thus, although any energy eigenstate I't ') gives rise to the usual evolution 
with respect to any given clock, it takes a very special I q ' )  to allow the 
existence of a large number of clocks keeping a common time. 

In conclusion, it is not necessary to include "t ime" as an a priori 
element of physics. Clock time, which makes sense even within a stationary 
state, is the only kind of time that can be observed. Furthermore, even the 
existence of clock time is only a contingent property of the world, especially 
the kind of clock time we are familiar with, which is common to many 
different clocks. Only certain states of the universe admit such a universal 
time. In this respect t ime itself  has the same status as that which we 
normally attribute to the existence o f  a preferred direction of time: we can 
imagine a world without it, and we must even regard our universe as special 
because it has it. 
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